PAY NO MORE

$2.00 us

Copyright 1986 MicroPACE. All rights reserved.
1986

ISSUE 36

Midnite Software Gasette

The First Independent U.S. Magazine for users of Commodore brand computers.

&

SUPER KIT/1541

BY MARTY FRANZ & JOE PETER

SINGLE/DUAL NORMAL COPIER

Copies a disk with no errors in 32.68
seconds. dual version has graphics &
music.

SINGLE/DUAL NIBBLE COPIER

Mibhle Copies a disk in 34.92 seconds.
dual version has graphics & music.
SINGLE/DUAL FILE COPIER

8 times normal DOS speed Includes

multi-copy, multi-scratch, view/edit BAM,

& NEW SUPER DOS MODE
TRACK & SECTOR EDITOR

Full editing of t&s in hex, dec, ascil, bin.

Includes monitor/disassembler with

GCR EDITOR

Yes disk fans, a full blown sector by
sector or track by track GCR Editor,
Includes Bit Density Scan.

SUPER DOS |

Fast boot for SUPER DOS. 150 blks in
10.12 seconds.

SUPER DOS It

Screen on and still loads 150 in 14.87
seconds.

SUPER NIBBLER

Quite frankly, if it can be copied on a
1541 this will do it! Including Abacus,
Timeworks, Accolayde, Epyx, Acti-vision,

(Clopyright 1986 Micro-PACE, All Rights reserved
Published by: Micro-PACE Comptuters
1212 Hagan St.

Champaign, IL 61820

(247) 356-1885)
Bob Woller, Owner/President
James A. Oldfield, Jr, V.P.
Tim Sickbert

Arl Lewis Kimball

Robert Baker

Dr. Richard Immers

Mike Stout

Educational Editor: Elizabeth Kasper

Editor-in-Chicf:
Editor:
Assc. Editors:

Address for Cerrespondence:
Post Office Box 1747
Champaign, I11. 61820
(217} 356-1885
1217) 356-8056
(300/1200 baud
Puniernet #35!)
August/Septem ber 1986

Voice Telephone:
Starship MPC BBS:

Issuc 36

All contents Copyright 1986, Micro-PACE. A cne
year subscription gives you {welve issues of the
Midrile Soltwars Gazette. Wser Groups with non-
profit status may reprint selected material from

this issue, provided that creditl is given 1o the
MIDNITE SOFTWARE GAZETTE, POB 1747, Champaign IL
61820, and the author of the material reprinted

Electronic Arts.

$29.95

PLUS $3.00 SHIPPING/HANDLING CHARGE — $5.00 C.0.0. CHARGE

PRISM

SOFTWARE

printout commands.

The Midnite Software Gazette reserves the right to
reprint the malerial contained herein at a later
date. The opinions expressed in contributed
articles and reviews are not necessarily those of
the Midnite Software Gazelie.

AlYl reviews and articles submiited and accepled
[or publication become the propertly of Micro-PACE.
Accuracy is a major lhing with us, but neither
Midnite nor Micro-PACE can assume liabilliy for
errors in reviews, articles, programs, Or grammar.

401 LAKE AIR DR., SUITE D « WACO, TEXAS 76710
ORDERS (817} 751-0200

MASTERCAHU & VISA AGCEPTED Midnite reserves the right to accepl or refuse any
malerial submitted as an adverilisement, or as iext

submitted for publication.

Ad rates are low: Full page, $200; ¥lalf page,
B100; ete.

| Commeadore, PET, CBM, VIC 20, Commodore 04, C64,
| Commodore C64C, Commodore 128 PC, PC-10, PC-20, B-

| S 128, Plus/4, and Amiga are all copyrights and/or
‘ EE THE WQRLD
|

trademarks of Commodore Electronics Ltd.,
Commodore Business Machines Inc,

Circulation this issue: 1500

Now availabie on

microfiche. . A T T
Only the finest, most respected ™D
publications are on microfiche. . g

Bell & Howell chooses only those publications
with the highest reference or research value to
be made available on microfiche. This publica- §%
ticn, among many other respected titles, has —
been awarded that honor. .

Call or write Ms. Pam Shea, Quotations Editor
Bell & Howell, Micro Phote Division] o 5
Old Mansfield Road, Wooster, OH 44691 SRR
or call toll free 1-800-321-9881. ‘ _ETHE TET
In Ohio call coliect 1-216-264-6666.

R T e n ok G OO D TE R O WS T e O S e

Please send complete information about microfiche.

WORLD GEOGRAPHY

Introducing an amazing new educational e for the Commod
64/128 fealuring a COLOR 3D R(%I‘ ATING GLOBE ang "

Title of Publication

delallled graphics of over 175 countries for 1 or 2 players. Name Title

on y$24 95 Company -
Add 32 shipping o {
and handling. CA 0. Address :
residents add 6.5% 3 Ci 5 Zi i
St 4°BOBCO D .

o

(U e L L

200 7th Ave., suite 111 Santa Cruz, CA 95062
1-800-331-4321 {CA) 1-800-851-1986

GETILING STARTED TN ASSEMBLY LANGUAGE PROGRAMMING

by Robert W. Baker

Many VIC-20 and Commodore-64 owners
are mnewcomers to the world of computer
programming. They ve had enough trouble
learning how to program in BASIC wilithout
being further confused with assembly or
machine language programmlng. However,
by not knowing how to enter and use
prepared assembly language programs, they
are missing out on a number of valuable
utilities and wuseful routines published
in magazines from tilme to tilme. I
thought it might be wvaluable to provide a
basic Intreduction to assembly language
programming and describe how to enter and
use an assembly language program-

The current
systems are

and previous Commodore
based on the 6502 micropro-
cessor or some newer member of the same
family. The 6502, and all other proces-
sors, understand only the ones and zeroes
that correspend to on or off states.
Thus, all data and 1instructions are
binary. Users find it hard to work with
the binary number system, and therefore
use a more convenlent representation such
as hexadecimal (bkase 16) or decimal. A
typical 6502 instruction to load the
value 21 (declmal) into the accumulator
may be shown as:

101061001 0001010 1in binary
A9 15 in hexadecimal
169 21 in decimal

The hexadecimal
used for machine

system 1s commonly
language programming
because it 1is the =esaslest to use when
talking about addresses within the com-
puter. For example, the BASIC text area
begins at the decimal address 2048. The
hexadecimal address 50800 specifies the
same locatlon, but is easier to work with
since the hexadecimal number is round-
ending in two zeros. This becomes more
important when working wilth addresses

like 56576 (declmal); it is usually
easier to remember the same address as
STDO0. Most assembly language program-

mers use hexadecimal, and most articles

glve programs 1in hex. I shall wuse it
here as well.
Even with the convenience of hex,

programmers finmd numeric representation
of ingtructions tedious to work with. So
a symbolic representation 1s commonly
used. For example, the preceding in-
struction might be written as:

1DA #21

In this case, LDA is the symbol for
the instruction to load the accumulator.
A computer program called an assembler is
used to translate the symbolic form LDA
te the numeric form $SA9. The symbolic
program is referred to as source code,
and the numeric program generated by the
assembler 1s called the object code. (The
numeric code produced by the assembler is
actually 1n binary but the assembler
program shows it to you as hex so {t will
be easler for you to read.) Some assem-
blers also produce a listing which shows
the correlation between the source code
and the object code. Only the binary
code can be executed on the computer, but
a speclal loader program may be needed to
load and run the object code-

Each machine
bolic name,

instruction has a sym-
referred to as an operation
code, op code, or mnemonlc. Some op
codes require an copérand to specify the
data on which the operation 1s to bhe
performed. The coperation portlon of an
instruction specifies elther an address
or a value, and may contain an expression
such as L2+2 for computed wvalues.

Additionally, any
labeled for reference
tions, as shown by:

instructilion may be
by . other instruc-

Label? LDA #21
In this example, the label is Labell,

the op code 1s 1LDA, and the operand 1is
#21. Labels are used as targets by branch

P.O. Box 1747 Champaign IL 61820 Issue 36

26 Midnite Software Gazette

instructions {the machine language equi-
valent of "GOTO") and as the data
elements (variables) within operands.

Most assemblers allow comments fol-
lowing the instruction operands. This
provides a convenlent way to document the
program flow for later reference.

Assembler dlrectives are another
lmportant feature of most assemblers.
These are special instructions to the
assembler to reserve storage space,
generate data constants, or otherwise
control the assembler operation.

Many different assemblers are avall-
able for the Commodore systems. Simple
assemblers may assemble source code from
BASIC DATA statements and POKE the object
code directly i1nto memory. Others may
read the source code from tape or disk
files and create an object file that must
later be loaded by a special program
(such as with the assembler offered by
Commodore) .

Assemblers written 1in BASIC are inex-
pensive and relatively slow, while those
writtem in machine code run much faster
and usually provide a number of features.
Be aware of any limitatlons or require-
ments of an assembler before considering
it for your particular needs.

Sample listing 1 shows an assembly
listing for a very sgimple machine lan-
guage routine. Let’'s disregard the
actual function of the routlne and just
look at the listing and what 1t tells us.
The first column of numbers indicates the
hexadecimal memory locations where every
instruction or data constant 1ls located-
The next three columns of two-digit
hexadecimal wvalues iIndicate the object
code, starting at the corresponding
location indicated on that line.

The next column shows the source code
line numbers. These are generally shown
merely for convenience They may, how-
ever, be wused by a speclal editor for
editing or creating the source code. The
remainder of the 1line is the actual
scurce code that was used to generate the

Issue 36

object code shown on that line. There
may be comments on the source code line
to document the program operatiom.

To get this routine 1Into your ma-
chine, if you have an assembler program,
you might just have to type In the source
code and assemble the program. At worst,
you mlght have to convert the assembler
syntax from that used 1in the article teo
the form used by your assembler.

However, 1f you don’t have an assem-
bler you can still enter and use the
routine. If the magazine doesn't use
some standard loader program for machine
language programs, just use one of the
available monltor programs to enter the
object code directly into the memory
locatlons specified in the assembly. If
the program ls short (like Sample listing
1), entering the object code should be
fairly simple; entering larger programs
may not be a very pleasant task.

Ta enter the object code directly,
first activate the monitor program as
normal. With most monitors you then have
to display the memory area to be modi-
fied, entering the desired starting and
ending addresses. You can get the hexa-
decimal addresses directly from the first
column of the assembly listing.

If the program is long, choose a block
of memory that will fit on the screen.
Now enter the data 1n the approprilate
locations, as indicated 1n the assembly
listing. The data will normilly be shown
in hexadecimal 1in the 1listing, the form
in which it will be accepted by most
meonitors. Filgure 1 is a memory display
showing how the sample program might be
entered using a typical monltor.

When you've finished entering a machine
language program into memory, it's always
a good idea to first save it on tape or
disk before doing anything else. If you
make a mistake in entering the program,
i1t could cause the entire system to hang
when the program 1s run. If this were to
happen, you could lose the program you
just entered when you reset or power off
the system to regaln control.

Midnite Software Gazette P.0O. Box 1747 Champaign IL 61820 27

Most monltor programs provide the
necessary command to save an area of
memory to tape or disk. You'll normally
have to specilfy the starting and ending
addresses, with the endlng address pos-
sibly one higher than the last location
to be saved.

There’'s cone point that many Commodore
owners are not aware of. You do not need
to ugse the monitor to load a machine
language program that was saved on tape
or disk. The nermal BASIC Load command
will load either a BASIC or a machine

language program. Both are saved as a
simple memory dump bhetween two locations
with the same flle header. Just be sure

to use the secondary address of 1 in the
LOAD command 1f you don't want the pro-
gram to be relocated by the loader.

Cnce you've saved it, try the program
for proper operation. If you have a
problem, reload the program and check the
values entered using the monitor. Also,
be sure the proper startlng address was
used to execute the program or routine.
The mnormal starting address should be
glven Iin the article-

Occasionally, there may be alternate
starting addresses for different func-
tions or optiens. Also, some programs
may expect parameters at specific loca-
tlons set by a BASIC program or certailn
variables defined 1in a specific order.
Be sure to read the article for details
what 1t the program expects-

Another way to double-check a machine
language program entered by a monltor is
te use a disassembler, which is a simple
program that converts object code back
into symbolic assembler form. For those
Interested, a simple BASIC disassembler
program is included. This program re-
quests a startling address and then asks
if printed output 1s desired. It then
produces a disassembly starting from the
location specified.

This program can also be helpful in
looking at routines in the BRASIC or
Kernel ROMs of the system itself, Lf the
appropriate starting address 1s glven. I

28 Midnite Software Gazette

P.O. Box 1747 Champaign IL 61820

should WAL, however, that 1f the
starting address is not the first byte of
an instruction (if 1it's actually an
instruction operand), the output may be
unpredictable. You may have to exper-
iment with the starting address to get
desirable results.

Sample listing 3 shows the disassem-
bler output. As you can see, the disas-
sembly listing 1s much like the assembly
listing except there are no labels. All
addresses are shown as absolute addresses
in hexadecimal notation. This disassem-
bler provides the declmal as well as the
hexadecimal location of each instruction
for added convenlence.

Also, on all branch instructions the
actual target address, rather than the
relative offset, is indicated. Thus, the
disassembler can be used to verilfy that
the correct Instructions have been
entered at the appropriate places.

When using the disassembler, it first
takes a few geconds to set up an Internal
table that 1s later used to speed up the
disassembly process. It then requests a
starting address that can be entered as a
decimal number or as a hexadecimal number
with a leading dollar sign ($). If
desired, the output can be printed or
displayed.

When printing the disassembly output,
press any key on the computer keyboard at
any time to suspend printing. Printing
will stop at the end of the current line.
You then have the option of continuing
the disassembly, terminating the printing
and restarting another disassembly, or
stopping the pregram and return to Basic.
Enter the appropriate letter for the
desired actlon as indicated.

When displaying the d¢isassembly out-
put, the same options are avallable at
the prompt at the bottom of each display

screen. This lets you easlly page

through memory as Jlong as deslred.
Restarting a disassembly allows specify-
ing a mnew starting address and re-di-
rectlng the output to the printer or
screern.

Issue 36

Sample listing 1 - Typical assembler output listing

007
007
007
007
007
007
008
008
008
008
008
008
608

3- E6
5- B0
7- E6
9- AD
c- C9
E- BO
0- C9
2- FQ
4 38
5- E9
7- 38
8- E9
A- 60

TA
02
7B
34 12
34a
0a
20
EF

30

DO

0010
0020
0030
0040
0050
0060
0070
0080
0090
01090
0110
0120
0130
0140
0150
0160
0170
0180
0199
0200
0210
0220
0230
0240

LS

;TURN ON LISTING

§ Tevedlededeve o R d ok Fedede e dode R deFede K dedede e

H

3 SAMPLE ML PROGRAM SOURCE

5

SPC -DI
-BA

CHRGET INC
BNE
INC
CHRGOT LDA
CMP
BCS
CMP
BEQ
SEC
SBC
SEC
SBC
CHRX RTS

$0020
$0073

CHRGOT+1
CHRCOT
CHRCOT +2
51234
#353A
CHRX
#SPC
CHRGCET

#3530

#5D0

;DEFINE SPACE CHAR
1 STARTING LOCATION

s TNCREMENT

; ADDRESS &

i BYTE IF CARRY

;GET BYTE (DUMMY ADR)
;CHECK FOR COLCON CHAR
{EXIT IF COLON

;CHECK FOR SPACE CHAR
;IF SPC, READ AGAIN

;CHECK CHAR NUM/LTR

;EXIT WHEN DONE

Sample listing 3 - Disassembler output

LOC-DEC/HEX OBJECT DISASSEMBLY

115
117
119
121
124
126
128
130
132
133
135
136
138

0073:
0075
G077
0079:
007C:
GO7E:
0080
0082
0084
0085:
0087
0088&:
008A:

E6
Do
E6
AD
co
BO
c9
FO
38
E9
38
E9
60

7A
02
78
34 12
34
04
20
EF

30

Do

ING $7A
BHNE $0079
INC $73
LA 51234
CMP #$53A
BCS $0084A
CMP #520
BEQ $0073
SEC

SBC #5830
SEC

SBC #SDO
RTS

Fig. 1 - Memory display showlng sample routine using monltor
0073 E6 7A DO 02 E6 7B AD 34
007B 12 C9 3A RO 0A C9 20 FO
0083 EF 38 E9 30 338 E9 DO 60

Issue 36

Midnite Software Gazette

P.O. Box 1747 Champaign IL 61820

29

100 rem machine language dis—assemblerx

110 rem by: robert w. baker

120 :

130 print"[CLR]dis~assemblexr"

140 print"[DOWN][DOWN][DOWN]initializing ..
L

150 dim m$(255): h$="012345678%abcdef"

160 for x%=0 to 255: read a$: if ag="*" then

a$=n0*?*n
170 aS=lefts(as+" L"y6): mS(x)=a$: nex
t ®x: rem <~- & spaces

180 print"[CLRlenter decimal starting addre
ss[DOWNI"™

120 print"or '$' followed by hex address[DO

WN]H

200 input a$: if left${(as,l1)="3&" then 230
210 for x=1 to len(a$): cs=mid$(as,x,1): if
€% < "0" oxr c$ » “9" then 180

220 next x: a=int(val(a$)/8)*8: goto 290
230 a=0: if len(as$)<2 then 180

240 for x=2 to lenf{as$): c$=mids(as$,x,1): if
c$ < "0" then 180

250 if ¢$<="9" then a=a*16+val{c$): goto 28
0

260 if c$<®a™ or ¢$»"fY then 180

270 a=a*lé+asc(e$)-55

280 next x

290 print"[DOWN]lwant printed copy": input™(
y/n) n{LEFTI[LEFT]{LEFT]";c$

300 p=3:1if left${(cs,1)="y" then p=4

310 open 4,p

320 print"[CLR]I";: if p=3 then 340

330 print"depress any key to halt printer":
print#4

340 print#4,"[RVON]loc-dec/hex object dai
ssassembly ": print#4

350 if p=3 then for n=1 to 20: rem **¥*¥* ch
ange 20 to 8 for vic-20 ***%*

360 if a»*65536 then a=a-65536

370 as$=str$(a): print#4,rights("” "+as,
)" "; rem <—— & spaces

380 y=a:gosub 690: print#4,": “;

390 v=peek(a): gosub 700: print#4," "i: a=
atl: as$=m$(v)

400 if lefts$(as,1)="0" then print#4,"";spc(
7):mid${(as,2,3): goto 580

410 v=peek{al): gosub 700: print#4," ";: a=a
+1

420 if left$(as$,1)="2" then 510

430 print#4,"";spce(4);nids(as,2,3);" ";: if
nids$(as,5,1)<>"r" then 460

440 if v>127 then v=v-256

450 y=atv: gosub 680: goto 570

460 if mid$(a$,5,1)="#" then print#4,"#3";:
gosub 700: goto 570

470 if mid$(a$,6,1)=")" then print#d,"(";

480 print#4,"$";: gosub 700: if mids(a$,5.1
}=" " then 570

490 if mids$(as$,5,2)="y}" then print#4,"),y"
: goto 580

500 print#4,",";mids${(as$,5,2): goto 580

510 vl=v: v=peek{a): gosub 700: a=a+l: prin

t#4," ";mids(as$,2,3);" “;

520 y=vl1+{256%v)

530 1if mid${as$,5,1)=")" then print#a,"(";:

gosub 680: print#4,")": goto 580

540 gosub 680

550 if mids$(as%,5,1)=" " then 570

560 print#4,",";mids{(as$,5,1);

570 print#4

380 if p=3 then next n: goto 600

590 get c$: if c5="" then 360

600 print"[DOWN][RVON]lcontinue, restart, oxr
stop {(c,rys) ? [RVOF]™;

610 get c¢$: if c$="c¢c" then 320

30

620 if c$="r" then close 4: goto 180

630 1f ¢5<>"g" then 610

640 close 4: end

650

860 rem subroutines

670 :

680 printift4,"s";

620 v=int(y/256): gosub 700: v=y-(v*256)
700 h=int({v/16): l=v-{h*16)

710 print#4,mids$(h$,h+1,1);mids{(hs,1+1,1);:
return

720

730 ren =SS =S=S=SSss===smamESToSmas==

740 rem 6502 instruction set data

750 rem SSSSSsossoooo=Ss==sSS=S—====

760

770 data Obrk,lcorax),*,*,*,lora,lasl,*

780 data Ophp,lora#,0asi,*,*,2ora,2asl,*

790 data 1lbplr,loray},*,*,*,loray,laslx,*

800 data 0Oc¢lc,20ray,*,*,*,2o0rax,2aslx,*

810 data 2jsr,landx},*,*,1lbit,land,lrol,*

820 data Oplp,land#,0rol,*,2bit, 2and,2rol,*

830 data 1lbmir,landy),*,*,*,landx,lrolx,*

840 data Osec,Zandy,*,*,*,2andx,2rolx,*

850 data Orti,lecrx),*,*,*,lecr,llsr,*

860 data Opha,leor#,0lsr,*,2jmp, 2eor,21lsr,*

870 data lbvcer,leory),*,*,*,leorx,llsrx,*

880 data Ocli,Z2eory,*,*,*,2eo0rx,2lsrx,*

B90 data Orts,ladcx),*,*,*,ladc,lror,*

200 data Opla,ladc#,0ror,*,2jmp), 2adc, 2rox,

91C data lbvsr,ladey),*,*,*,ladcx,lrorx,*
920 data Osei,z2adey,*,*,*,2adcx, 2rorx, *

230 data *,lstax),*,*,lsty,lsta,lstx,*

940 data Odey,*,0txa,*,2sty, 2sta,2stx,0

920 data lbcer,lstay),*,*,lstyx,lstax,lstxy

i

960 data Otya,2stay,Otxs,*,*,2stax,*,*

970 data 11dy#,1lldax),11ldx#,*,11dy,13da,11d
X, ¥

980 data Otay,llda#,0tax,*,21dy,21lda,21dx, *
920 data lbesr,llday),*,*,1ldyx,1l1ldax,1ldxy

4

1000 data Oclv,2lday,0tsx,*,21dyx,21ldax, 214
2y, *®

1010 data lcpy#,lempx),*,*,lcpy, lemp,ldec, *
%020 data Q0iny,lcemp#,0dex,*,2cpy, 2cnp, 2dec,

1030 data lbner,lompy),*,*,*,lcmpx,ldecx,*
1040 data 0Ocld, Zcnpy,*,*,*,2cnpx, 2decx, *
1050 data lcpx#,lsbex),*,*,lcpx,1lsbe,ling,*
%060 data 0inx,lsbc#,Onop,*, 2¢px,2s8bc, 2inc,

1070 data lbeqr,lsbey),*.¥%,*,1sbex,lincx,*
1080 data Osed,2sbay,*,*,*,2sbox, 2incx,*

100 rem machine language dis-assembler
110 rem by: robert w. baker

130 print"[CLR]dis-assembler”
140 print"[DOWNIIDOWN][DOWN]initializing ..

150 dim m$(255): h$="0123456789%abcdef"

160 for x=0 to 255: read a$: if a$="*" then
a$=n0*?*lr

170 as$=lefts(as+y

t x: rem <-- & sgpaces
180 print™[CLR)enter decimal starting addre
ssi{DOWN]"

190 print"or '$' followed by hex address[DO

WN]"

200 input a$: if lefts(a$,1)="$" then 230
210 for x=1 to len(a$): cS=mids(a$,x,1): if
cs < "0" or c$ >

My6): mS(x)=ad: nex

